

American Journal of Computer Science and Technology
2021; 4(4): 119-128

http://www.sciencepublishinggroup.com/j/ajcst

doi: 10.11648/j.ajcst.20210404.15

ISSN: 2640-0111 (Print); ISSN: 2640-012X (Online)

Applications Based on a Novel Sudoku Solver Algorithm
and Grid Based Models

Abhishake Kundu
1
, Anand Sunder

2

1Department of Industrial and Manufacturing Systems Engineering, Texas Tech University, Lubbock, USA
2Capgemini SE, Hyderabad, India

Email address:

To cite this article:
Abhishake Kundu, Anand Sunder. Applications Based on a Novel Sudoku Solver Algorithm and Grid Based Models. American Journal of

Computer Science and Technology. Vol. 4, No. 4, 2021, pp. 119-128. doi: 10.11648/j.ajcst.20210404.15

Received: August 18, 2021; Accepted: November 24, 2021; Published: December 2, 2021

Abstract: Numerous algorithms for solving sudoku puzzles have been explored, most of which use a backtracking approach.

Thus computational efficiency of such algorithms can sometimes yield poor results. We propose a probabilistic solver

algorithm which, iteratively fills the sudoku grid and solves the same. In this approach we make use of a dynamic random

number set, we identify unassigned sudoku grids for a given puzzle where only one possible value can be filled in and

iteratively identify and assign cells with least number of possible values. We not only elaborate on our solver algorithm logic,

but also explore application areas based on algorithm devised, after reviewing relevant similar approaches illustrated in the

referenced articles. We believe by extension of this algorithm, many combinatorial problems in the field of material

characterization, cryptography, cybersecurity can be solved and advanced. We also envision that with application of neural

networks, Machine Learning techniques the algorithm will take a very adaptive and robust form, useful for solving complex

problems in accurate estimation of missing data, discrete event analysis and prediction. Uniqueness is the ability to use high

probability for faster computation and low execution time. With cyberattacks of varied vectors and types, its important to

devise a mechanism to create a deliberate mismatch every time a possible attack is detected.

Keywords: Sudoku Solver, Logistic Model, Backtracking, Algorithm

1. Introduction

Solving a sudoku puzzle using a deterministic method is

similar to taking the right decisions after weighing the risks

involved, instead of wasting resources trying and

backtracking every time someone takes a wrong direction.

Even the best of algorithms [1] do not prove ideal, alternative

approaches such as the backtracking algorithm [2], exact

cover approach [3], stochastic approaches [4, 5] and a

deterministic approach [6] although each exhibiting a unique

style and prowess based on varied computing metrics, thus a

quest to unravel an approach that repeatedly seeks a naked

single6 until the only option left is to make use of a random

number generator as seen in 2 is explored based on shifting

probabilities of assignment to an unassigned Sudoku cell.

This approach opens avenue to understanding ways to avoid

exhausting possible paths to solving a problem/completing a

task.

Genetic algorithms [5] till date were acknowledged to have

superior performance, compared to all of the state of the art

till date. While we reviewed all approached, we realized that

there was still no way to benchmark algorithms as the best

achievable performance and do all comparisons based on the

same.

The need for a comprehensive algorithm that worked

based on assigning cells that had least number of possible

values, or a dynamic probabilistic approach. Sudoku grids

which generate a p=1 or single possible assignment value are

considered as accelerators for our approach. Likewise, we in

general look for unassigned cells with lest number of

possible values, based on first cut grid tear down.

Our idea was to use this as a reference to compare human

solvers and map it against this, to study how often the human

mind gets close to the solution and misses it. Also where does

the human mind surpass the algorithm.

To study these, we needed to phase the problem into

phases and address each of them in order.

Following was the initial study undertaken:

 American Journal of Computer Science and Technology 2021; 4(4): 119-128 120

1) Complete the working prototype solver in R and feed

diverse, unbiased samples of Sudoku puzzles from a wide

variety of sources.

2) Collect and save iteration statistics generated by R

software and the 3D scatter plot visualizations showing

probabilistic shifts for unassigned cells.

3) Train logic regression models based on unassigned

versus assigned cell probabilities, to classify puzzles as

unique or multi solution

4) Also identify diverse application possibilities for

isomorphous decision structures.

Algorithm proof of concept for 2x2 grids:

We illustrate the approach using R software for a 2x2 grid

and showing graphically how thealgorithm iteratively arrives

at a solution.

Figure 1. Iterations of a 2x2 Latin square proof of concept showing solution at 5 th step.

The algorithm illustrated for 4X4 puzzles turns out to be

deterministic in comparison to 9x9 puzzles which turn

stochastic in nature once a algorithm required run of random

number generator to guess unassigned cells. However, with

this limitation for 9x9 cells, we still are able to identify and

reject multi solution grids and filter out sudoku puzzles. We

haven’t in our scope of study found a way of characterizing

� 2X� 2 type grids or studied effect of algorithm performance

against increasing grid size.
Algorithm run in RStudio for a sudoku puzzle:

Combinatorics a forerunner to the modern day sudoku, has

been under the attention of mathematicians like Euler [7], the

first ever attempt to make a grid where a symbol or number

occurs once in each row or column. For integers 1 through 9,

a 9x9 such combinatorial unsolved grid yielding one unique

solution became an intriguing class of puzzles, today we

know these as sudoku.

Our initial hypothesis was that our greedy algorithm will

identify cells in the unsolved Sudoku grid which have a

unique possibility of assignment. In general, too for solving

an incomplete Latin square this is a boon [7]. The next part of

our study was based on the run of the algorithm for various

sudoku puzzles and consolidate findings from the same.

We realize that the solver algorithm needed to continue

without backtracking at points where there were multiple

possible values of assignment, during the course of iterations.

We introduced an explicit logic in code which flags off such

points. We make use of a dynamic random number generator

set S, obeying the constraints of a Latin square, here in

specific the sudoku puzzle.

Excerpt from R programming showing a Random number

generator runs:

Here the function sample (1:1:10,9) is a row generator that

would form the base of a Latin square solver.

[1] 1 8 2 9 4 6 5 3 7

> b<-sample (1:1:9)

> b

[1] 3 5 8 9 2 1 7 4 6

> b<-sample (1:1:9)

> b

[1] 5 6 4 9 7 8 2 3 1

> b<-sample (1:1:9)

> b

[1] 3 1 2 6 4 8 5 7 9

> b<-sample (1:1:9)

> b

[1] 1 8 4 9 6 5 3 7 2

> b<-sample (1:1:9)

> b

[1] 6 7 3 2 1 5 4 9 8

> b<-sample (1:1:9)

> b

121 Abhishake Kundu and Anand Sunder: Applications Based on a Novel Sudoku Solver

Algorithm and Grid Based Models

[1] 6 5 2 4 7 8 3 9 1

> b<-sample (1:1:9)

> b

[1] 9 2 6 4 5 3 1 8 7

Perhaps in the free form manner, we might have to end up

running several runs of the function to obtain and isolate the

Latin squares using this approach.

Given a Latin square puzzle, this approach would have to

run several iterations and populate a set containing unique

Latin squares. We would then have to make use of genetic

algorithms [5] and neural networks, to arrive at a solution. In

the evolutionary computing world this approach seemed ideal

but would be computationally expensive.

Thus we needed a call for a straight forward approach

without backtracking, in all of our literature survey we did

find some approached were extremely efficient but all of the

methods [1-6] called for backtracking at some stage of

iteration. However, we can’t deny that genetic algorithms

would perhaps serve as the most efficient algorithms for

puzzle generation [5], likewise these would also aid in

solving complex challenges in pattern recognition,

characterizing materials.

2. Results from the Run of Sudoku

Solver Algorithm in R

Algorithm terminates when the iteration is left with cell

values containing assignment probability all or most equal to

1, and zero’s or assigned cells.

Interpolation studies would reveal the rate of shift in

probabilities per iteration, computing ∆[p]9� 9, ∆2[p]9� 9,….

∆� - 1 [p]9� 9, where n is the number of iterations taken to

solve the sudoku grid will reveal complexity of the puzzles

undertaken.

Figure 2. Iteration 1.

Figure 3. Iteration 2.

Figure 4. Iteration 3.

Figure 5. Iteration 4.

 American Journal of Computer Science and Technology 2021; 4(4): 119-128 122

Figure 6. Iteration 5.

Figure 7. Iteration 6 Penultimate step before solution.

3. Regression Model Evolution to

Classify Puzzles

There was a need to identify the most accurate

classifier model, which can be used in conjunction with

results of the first iteration of the algorithm to identify

grids which qualify as sudoku puzzles, i.e, ones with

unique solution.

Our initial premise is to evaluate a linear regression

model to classify grids in this manner, We create the

following variables y matrix showing unique versus multi

solution grids.

Here unique solution is classified as 0, and multi solution

as 1.

We take here for sampling 5 random puzzles, of which 3

are known to be unique solution and 2 are multi solution,

train a regression model to classify puzzles.

3.1. Deviance Residuals

1 2 3 4 5

-0.08077 -0.60000 -0.19615 0.49615 0.38077

3.2. Coefficients

(1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.15000 6.44819 -0.489 0.674

P1 -0.25000 0.31547 -0.792 0.511

AC 0.07692 0.12374 0.622 0.598

UA NA NA NA NA

(Dispersion parameter for gaussian family taken to be

0.3980769)

Null deviance: 1.20000 on 4 degrees of freedom

Residual deviance: 0.79615 on 2 degrees of freedom

AIC: 13.002

3.3. Residuals Versus Fitted

Figure 8. Residual plot of fitted linear model.

Figure 9. Fitted line in contrast to the points varying as number of cells with

single assignment possibility, unassigned cells, and assigned cells.

From the Results Summary we obtain the classifier model as

Y=-0.25P1+0.077AC

But the classifier accuracy is low since 2,4 are classified as

unique solution instead of 2,3. Meaning the accuracy is 50%

and also our output value y is a Boolean.

4. Logit Regression Model

4.1. First Iteration Number of Cells with Unique

Assignment Possibility

Call:

123 Abhishake Kundu and Anand Sunder: Applications Based on a Novel Sudoku Solver

Algorithm and Grid Based Models

glm(formula=y ~ P1, family="binomial")

Deviance Residuals:

1 2 3 4 5

0.5837 -1.4036 -0.9172 1.4622 0.5837

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.683 1.779 0.946 0.344

P1 -1.166 1.214 -0.960 0.337

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6.7301 on 4 degrees of freedom Residual

deviance: 5.6307 on 3 degrees of freedom

AIC: 9.6307

Here the classification accuracy as highlighted by the Z

value is at 94.6%.

Number of Fisher Scoring iterations: 4 where P1 is the
number of cells in the grid after first iteration of the
algorithm where only one value can be fitted.

Figure 10. Points in contrast to fitted line varying as uunassigned cells,

number of unique assignment possibility cells.

We thus conclude that number of unique assignment

possibility cells, obtained in first iteration is the most

accurate determining factor to classify and isolate sudokus

from a grid generator.

To confirm we fit logit regressions to other factors

individually listed and check

1) Number of Unassigned cells at first iteration:

Call:

glm(formula=y ~ UA, family="binomial")

Deviance Residuals:

1 2 3 4 5

0.6342 -1.3812 -1.0846 0.7395 1.4257

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 10.4668 13.1665 0.795 0.427

UA -0.3448 0.4472 -0.771 0.441

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6.7301 on 4 degrees of freedom

Residual deviance: 6.0658 on 3 degrees of freedom

AIC: 10.066

Number of Fisher Scoring iterations: 4

Here the classification accuracy is about 79.5%

2) Number of Assigned Cells in the First Iteration:

Call:

glm(formula=y ~ AC, family="binomial")

Deviance Residuals:

1 2 3 4 5

0.6342 -1.3812 -1.0846 0.7395 1.4257

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -17.4626 23.1154 -0.755 0.450

AC 0.3448 0.4472 0.771 0.441

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6.7301 on 4 degrees of freedom

Residual deviance: 6.0658 on 3 degrees of freedom

AIC: 10.066

Number of Fisher Scoring iterations: 4

Here the classification accuracy is about 77.1%
3) Unassigned Cells and No of cells with unique possibility

at end of first iteration:

Call:

glm(formula=y ~ P1 + UA, family="binomial")

Deviance Residuals:

1 2 3 4 5

0.1236 -1.5454 -0.3968 1.0508 0.9131

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 23.1191 28.3519 0.815 0.415

P1 -1.9316 2.1979 -0.879 0.379

UA -0.7019 0.8972 -0.782 0.434

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6.7301 on 4 degrees of freedom

Residual deviance: 4.4990 on 2 degrees of freedom

AIC: 10.499

Number of Fisher Scoring iterations: 6

Here we get a 81.5% accuracy of classification

4) Assigned cells and no of cells with unique assignment

possibility at first iteration:

Call:

glm(formula=y ~ P1 + AC, family="binomial")

Deviance Residuals:

1 2 3 4 5

0.1236 -1.5454 -0.3968 1.0508 0.9131

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -33.7324 44.4275 -0.759 0.448

P1 -1.9316 2.1979 -0.879 0.379

AC 0.7019 0.8972 0.782 0.434

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6.7301 on 4 degrees of freedom

Residual deviance: 4.4990 on 2 degrees of freedom

AIC: 10.499

Number of Fisher Scoring iterations: 6

We also run Chi-Square tests for getting models showing

 American Journal of Computer Science and Technology 2021; 4(4): 119-128 124

highest

True positive percentage:

1) Unassigned cells at first iteration

Chi-squared test for given probabilities

data: UA

X-squared=0.89655, df=4, p-value=0.9251

2) Cells having unique possibility:

Chi-squared test for given probabilities

data: P1

X-squared=4, df=4, p-value=0.406

3) Assigned cells at first iteration

Chi-squared test for given probabilities

data: AC

X-squared=0.5, df=4, p-value=0.9735

Using randomly selected sample sudoku puzzles
from various sources, we make sure that our classifier
models are accurate and unbiased.

4.2. Scatter Plot Showing Probability Distribution of the Penultimate Iteration

Figure 11. Scatter plot showing assignment probability distribution at Penultimate iteration.

4.3. Identifying a Multi Solution Puzzle

We have included also an identifying logic that isolates

multi-solution puzzles and flags it through the iterations as

seen in the snippet below.

Broadly three categories or cases can be charted out where

grids can yield multiple solutions.

Random Number Generator Cannot Fill Assign any Value

Or Runs Out

Figure 12. Locked conflicting iteration block.

125 Abhishake Kundu and Anand Sunder: Applications Based on a Novel Sudoku Solver

Algorithm and Grid Based Models

4.3.1. Cell with Two Possible Assignment Values at the Penultimate Iteration

Figure 13. Penultimate iteration with one locked cell and one with two assignment possibilities.

4.3.2. All Unassigned Cells have Multiple Possibilities at Penultimate Iteration

Figure 14. Penultimate iteration with no cell values with unique assignment possibility.

These are explicitly called in the working code to flag such grids, this also highlights the potential of a puzzle generator.

In order to get to logically define a puzzle generator we thus need to firstly revisit the algorithm, in terms of a flow chart.
Algorithm flowchart:

 American Journal of Computer Science and Technology 2021; 4(4): 119-128 126

Figure 15. Algorithm flow chart of the sudoku solver.

4.4. Difficulty Rating of Sudoku Puzzles

Based on the proposed and running it on various puzzles we come across what is a rounded normalized score. The

hypothesis or premise of the difficulty rating is based on the probability of assignment to unassigned grids before puzzle is

solved by the algorithm.

Figure 16. Normalized Difficulty rating of sudoku puzzles based on the solver.

127 Abhishake Kundu and Anand Sunder: Applications Based on a Novel Sudoku Solver

Algorithm and Grid Based Models

4.5. Applications of the Solver Algorithm

Based on the study conducted and insights on the

algorithm run, following possible applications could be

explores:

4.5.1. Cybersecurity Solutions

A dynamically generated incomplete latin square or

sudoku can serve as a strong authentication means for

accessing extremely confidential information. Traditional

username password-based authentication will have

vulnerabilities that could be overcome by this means.

4.5.2. Modelling Decision-making Problems

Real-life decision-making scenarios especially in complex

projects involve multiple factors, after exploring the

algorithm from various perspectives, it is not far that we are

able to create algorithms [3, 8], that are able to model

decision making and factors governing it.

4.5.3. Constraint Modelling for Complex Scenarios

High backtracking or failure prone projects or issues,

where constraints are also dynamic. We can use Latin squares

or rectangles to model or approximate the constraints

themselves [8, 7].

4.5.4. Cybersecurity

Firewalls, antiviruses, token-based authentication

mechanisms, make use of logic that could be manipulated

and tampered. We thus need to integrate a mechanism that is

feedback and input driven. The inputs to the mechanism

being threat pattern or signature, this will also be used to feed

a random number generator which feeds incomplete latin

squares to our algorithm. A logic block that deliberately

introduces a mismatch and fails an attempted authentication

by the malicious software or virus program. The detailed

logic for the system, needs to be developed in phases and

calls for indigenously developing each of the logical blocks

as shown below.

Flowchart of the proposed cybersecurity solution:

Figure 17. Cybersecurity solution design based on solver algorithm.

4.5.5. Characterizing Material Properties

The published article [9] talks about use of IFEA,

characterizing methods based on conventional tests such as

uniaxial tensile and compression tests. A closer thought to the

process, we can see how the concept of an incomplete Latin

square can find suitable use here. An incomplete Latin square

can be shown analogous to an incompletely characterized

material. Based on knowledge of permissible limits for

properties such as uniaxial tensile strength, compression

strength or shear strength we can model a random number

generator, which can be run inside of the solver algorithm to

completely decode the missing property values.

4.5.6. Design of Experiments for Fractional Factorial

Designs with Blocking Uses

Latin squares for modelling scenarios when there are n

distinct treatment types applied to n different subjects. Here

balanced incomplete blocks [10] are used in situations where

number of factors are less than number of treatment levels.

Given that these form basis of designing incomplete blocks.

Statistical model defining response variable yijk, seen as

 American Journal of Computer Science and Technology 2021; 4(4): 119-128 128

an effect of other variables such as 	 (Overall average), Ri,

column Cj, kth treatment Tk and error
 ijk [10].

We are able to use the above model also to evaluate the

incomplete blocks, in conjunction with the Latin square

solver algorithm. This is applicable in situations where all

treatments are distinct, number of subjects are definitely

lower than treatments.

Error modelling is cumbersome, but reduced factorials or

blocking effects when known can be efficiently solved using

our algorithm.

Thus, we reach a point where the concept of purely

deterministic or purely statistical approaches to model

completely fail, calling in for new approaches to tackle

challenges in all the mentioned problem areas.

Reformulating (2), showing the error in predicting the

outcome yijk
 ijk � yijk � µ � Ri � Cj � Tk.

Minimizing the above function given constraints, one of

which is the Latin square that forms the design block.

One of the real-life problems that is intriguing and similar

in model to factorial design, being discussed here is that of

identifying factors that negatively impact performance of an

indigenously developed application with multiple features.

Here we can liken application features to elements or

attributes in a grid, treatments as the distinct combination of

test scenario settings that application is being subjected to.

For example, an application where multiple workflows are

running concurrently, the number of factors causing variation

are large, in most cases nested in structure too. Very often,

the actual design block would often have missing elements,

calling out more tests including these elements. In order to

not run extra tests, and arrive at actual expected projection

estimates, we need to use fractional factorials.

Decision modelling using design spaces, can make use of

the solver to fill up missing parts of the decision model or

outcome.

Even with use of non-parametric smoothing processes, for

improving model accuracy, we need to make sure we reduce

the space of unknowns, are left with most part of our

experimental design known [10].

We can use the following excerpt showing a nested

random number generator run to generate rows of varying

sizes:

5. Conclusions

Applications of the generic Latin square or the solver

algorithm could range from cybersecurity to frontiers in

material science and material characterization. The

possibilities are limitless, with the advent of modern AI/ML

the algorithms can be further expanded and enriched to

include multiple possibilities.

Acknowledgements

We would like to thank Prof Susan Urban for bringing in

us an interest in the field of Data Science during our journey

as graduate students in Texas Tech University.

References

[1] Arnab K Maji, Sudipta Roy and Rajat K Pal (2013). A Novel
Algorithmic approach for solving Sudoku puzzle in Guess
Free Manner.

[2] Backtracking approach to Sudoku solver: Geeks for Geeks.

[3] Exact cover algorithm to solving Sudoku puzzles: Wikipedia.

[4] Karimi-Dehkordi Z., Zaman far K., Baraani-Dastjerdi A.,
Ghasem-Aghaee N. (2010) Sudoku Using Parallel Simulated
Annealing. In: Tan Y., Shi Y., Tan K. C. (eds) Advances in
Swarm Intelligence. ICSI 2010. Lecture Notes in Computer
Science, vol 6146. Springer, Berlin, Heidelberg.

[5] John M Weiss. (2009). “Genetic Algorithms and Sudoku”.

[6] H. L Xao, X. S Ding (2014) “On the Generation and
Evaluation of a Sudoku Puzzle”.

[7] Maria-Ercsey-Ravasz & Zoltan Toroczkai (2012). “The Chaos
within Sudoku”.

[8] Alice H. Becker (2013). “Sudoku and Image Security”.

[9] Guilio Maier, Vladmir Buljak, Giuseppe Cocheti (2012).
“Mechanical Characterization of Materials and Diagnosis of
Structures by Inverse Analysis: Some Innovative Procedures
and Applications”.

[10] Lei Gao (2005). “Latin Squares in Experimental Design”.

Biography

Anand Sunder: Currently working as a Site

Reliability Engineer with Capgemini. As a

graduate student in Texas Tech University

developed deep interest in Data Science,

Analytics and this led to my onward journey

in career further.

Abhishake Kundu: Pursuing a Ph.D. at

Texas Tech University, Abhishake Kundu is a

statistician, stochastics researcher and a

football enthusiast.

