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Abstract: Numerous algorithms for solving sudoku puzzles have been explored, most of which use a backtracking approach. 

Thus computational efficiency of such algorithms can sometimes yield poor results. We propose a probabilistic solver 

algorithm which, iteratively fills the sudoku grid and solves the same. In this approach we make use of a dynamic random 

number set, we identify unassigned sudoku grids for a given puzzle where only one possible value can be filled in and 

iteratively identify and assign cells with least number of possible values. We not only elaborate on our solver algorithm logic, 

but also explore application areas based on algorithm devised, after reviewing relevant similar approaches illustrated in the 

referenced articles. We believe by extension of this algorithm, many combinatorial problems in the field of material 

characterization, cryptography, cybersecurity can be solved and advanced. We also envision that with application of neural 

networks, Machine Learning techniques the algorithm will take a very adaptive and robust form, useful for solving complex 

problems in accurate estimation of missing data, discrete event analysis and prediction. Uniqueness is the ability to use high 

probability for faster computation and low execution time. With cyberattacks of varied vectors and types, its important to 

devise a mechanism to create a deliberate mismatch every time a possible attack is detected. 
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1. Introduction 

Solving a sudoku puzzle using a deterministic method is 

similar to taking the right decisions after weighing the risks 

involved, instead of wasting resources trying and 

backtracking every time someone takes a wrong direction. 

Even the best of algorithms [1] do not prove ideal, alternative 

approaches such as the backtracking algorithm [2], exact 

cover approach [3], stochastic approaches [4, 5] and a 

deterministic approach [6] although each exhibiting a unique 

style and prowess based on varied computing metrics, thus a 

quest to unravel an approach that repeatedly seeks a naked 

single6 until the only option left is to make use of a random 

number generator as seen in 2 is explored based on shifting 

probabilities of assignment to an unassigned Sudoku cell. 

This approach opens avenue to understanding ways to avoid 

exhausting possible paths to solving a problem/completing a 

task. 

Genetic algorithms [5] till date were acknowledged to have 

superior performance, compared to all of the state of the art 

till date. While we reviewed all approached, we realized that 

there was still no way to benchmark algorithms as the best 

achievable performance and do all comparisons based on the 

same. 

The need for a comprehensive algorithm that worked 

based on assigning cells that had least number of possible 

values, or a dynamic probabilistic approach. Sudoku grids 

which generate a p=1 or single possible assignment value are 

considered as accelerators for our approach. Likewise, we in 

general look for unassigned cells with lest number of 

possible values, based on first cut grid tear down. 

Our idea was to use this as a reference to compare human 

solvers and map it against this, to study how often the human 

mind gets close to the solution and misses it. Also where does 

the human mind surpass the algorithm. 

To study these, we needed to phase the problem into 

phases and address each of them in order. 

Following was the initial study undertaken: 
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1) Complete the working prototype solver in R and feed 

diverse, unbiased samples of Sudoku puzzles from a wide 

variety of sources. 

2) Collect and save iteration statistics generated by R 

software and the 3D scatter plot visualizations showing 

probabilistic shifts for unassigned cells. 

3) Train logic regression models based on unassigned 

versus assigned cell probabilities, to classify puzzles as 

unique or multi solution 

4) Also identify diverse application possibilities for 

isomorphous decision structures. 

Algorithm proof of concept for 2x2 grids: 

We illustrate the approach using R software for a 2x2 grid 

and showing graphically how thealgorithm iteratively arrives 

at a solution. 

 

Figure 1. Iterations of a 2x2 Latin square proof of concept showing solution at 5 th step. 

The algorithm illustrated for 4X4 puzzles turns out to be 

deterministic in comparison to 9x9 puzzles which turn 

stochastic in nature once a algorithm required run of random 

number generator to guess unassigned cells. However, with 

this limitation for 9x9 cells, we still are able to identify and 

reject multi solution grids and filter out sudoku puzzles. We 

haven’t in our scope of study found a way of characterizing 

� 2X� 2 type grids or studied effect of algorithm performance 

against increasing grid size. 
Algorithm run in RStudio for a sudoku puzzle: 

Combinatorics a forerunner to the modern day sudoku, has 

been under the attention of mathematicians like Euler [7], the 

first ever attempt to make a grid where a symbol or number 

occurs once in each row or column. For integers 1 through 9, 

a 9x9 such combinatorial unsolved grid yielding one unique 

solution became an intriguing class of puzzles, today we 

know these as sudoku. 

Our initial hypothesis was that our greedy algorithm will 

identify cells in the unsolved Sudoku grid which have a 

unique possibility of assignment. In general, too for solving 

an incomplete Latin square this is a boon [7]. The next part of 

our study was based on the run of the algorithm for various 

sudoku puzzles and consolidate findings from the same. 

We realize that the solver algorithm needed to continue 

without backtracking at points where there were multiple 

possible values of assignment, during the course of iterations. 

We introduced an explicit logic in code which flags off such 

points. We make use of a dynamic random number generator 

set S, obeying the constraints of a Latin square, here in 

specific the sudoku puzzle. 

Excerpt from R programming showing a Random number 

generator runs: 

Here the function sample (1:1:10,9) is a row generator that 

would form the base of a Latin square solver. 

[1] 1 8 2 9 4 6 5 3 7 

> b<-sample (1:1:9) 

> b 

[1] 3 5 8 9 2 1 7 4 6 

> b<-sample (1:1:9) 

> b 

[1] 5 6 4 9 7 8 2 3 1 

> b<-sample (1:1:9) 

> b 

[1] 3 1 2 6 4 8 5 7 9 

> b<-sample (1:1:9) 

> b 

[1] 1 8 4 9 6 5 3 7 2 

> b<-sample (1:1:9) 

> b 

[1] 6 7 3 2 1 5 4 9 8 

> b<-sample (1:1:9) 

> b 
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[1] 6 5 2 4 7 8 3 9 1 

> b<-sample (1:1:9) 

> b 

[1] 9 2 6 4 5 3 1 8 7 

Perhaps in the free form manner, we might have to end up 

running several runs of the function to obtain and isolate the 

Latin squares using this approach. 

Given a Latin square puzzle, this approach would have to 

run several iterations and populate a set containing unique 

Latin squares. We would then have to make use of genetic 

algorithms [5] and neural networks, to arrive at a solution. In 

the evolutionary computing world this approach seemed ideal 

but would be computationally expensive. 

Thus we needed a call for a straight forward approach 

without backtracking, in all of our literature survey we did 

find some approached were extremely efficient but all of the 

methods [1-6] called for backtracking at some stage of 

iteration. However, we can’t deny that genetic algorithms 

would perhaps serve as the most efficient algorithms for 

puzzle generation [5], likewise these would also aid in 

solving complex challenges in pattern recognition, 

characterizing materials. 

2. Results from the Run of Sudoku 

Solver Algorithm in R 

Algorithm terminates when the iteration is left with cell 

values containing assignment probability all or most equal to 

1, and zero’s or assigned cells. 

Interpolation studies would reveal the rate of shift in 

probabilities per iteration, computing ∆[p]9� 9, ∆2[p]9� 9,…. 

∆�  - 1 [p]9� 9, where n is the number of iterations taken to 

solve the sudoku grid will reveal complexity of the puzzles 

undertaken. 

 

Figure 2. Iteration 1. 

 

Figure 3. Iteration 2. 

 

Figure 4. Iteration 3. 

 

Figure 5. Iteration 4. 
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Figure 6. Iteration 5. 

 

Figure 7. Iteration 6 Penultimate step before solution. 

3. Regression Model Evolution to 

Classify Puzzles 

There was a need to identify the most accurate 

classifier model, which can be used in conjunction with 

results of the first iteration of the algorithm to identify 

grids which qualify as sudoku puzzles, i.e, ones with 

unique solution. 

Our initial premise is to evaluate a linear regression 

model to classify grids in this manner, We create the 

following variables y matrix showing unique versus multi 

solution grids. 

Here unique solution is classified as 0, and multi solution 

as 1. 

We take here for sampling 5 random puzzles, of which 3 

are known to be unique solution and 2 are multi solution, 

train a regression model to classify puzzles. 

3.1. Deviance Residuals 

1 2 3 4 5 

-0.08077 -0.60000 -0.19615 0.49615 0.38077 

3.2. Coefficients 

(1 not defined because of singularities) 

Estimate Std. Error t value Pr(>|t|) 

(Intercept) -3.15000 6.44819 -0.489 0.674 

P1 -0.25000 0.31547 -0.792 0.511 

AC 0.07692 0.12374 0.622 0.598 

UA NA NA NA NA 

(Dispersion parameter for gaussian family taken to be 

0.3980769) 

Null deviance: 1.20000 on 4 degrees of freedom 

Residual deviance: 0.79615 on 2 degrees of freedom 

AIC: 13.002 

3.3. Residuals Versus Fitted 

 

Figure 8. Residual plot of fitted linear model. 

 

Figure 9. Fitted line in contrast to the points varying as number of cells with 

single assignment possibility, unassigned cells, and assigned cells. 

From the Results Summary we obtain the classifier model as 

Y=-0.25P1+0.077AC 

But the classifier accuracy is low since 2,4 are classified as 

unique solution instead of 2,3. Meaning the accuracy is 50% 

and also our output value y is a Boolean. 

4. Logit Regression Model 

4.1. First Iteration Number of Cells with Unique 

Assignment Possibility 

Call: 
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glm(formula=y ~ P1, family="binomial") 

Deviance Residuals: 

1 2 3 4 5 

0.5837 -1.4036 -0.9172 1.4622 0.5837 

Coefficients: 

Estimate Std. Error z value Pr(>|z|) 

(Intercept) 1.683 1.779 0.946 0.344 

P1 -1.166 1.214 -0.960 0.337 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 6.7301 on 4 degrees of freedom Residual 

deviance: 5.6307 on 3 degrees of freedom 

AIC: 9.6307 

Here the classification accuracy as highlighted by the Z 

value is at 94.6%. 

Number of Fisher Scoring iterations: 4 where P1 is the 
number of cells in the grid after first iteration of the 
algorithm where only one value can be fitted. 

 

Figure 10. Points in contrast to fitted line varying as uunassigned cells, 

number of unique assignment possibility cells. 

We thus conclude that number of unique assignment 

possibility cells, obtained in first iteration is the most 

accurate determining factor to classify and isolate sudokus 

from a grid generator. 

To confirm we fit logit regressions to other factors 

individually listed and check 

1) Number of Unassigned cells at first iteration: 

Call: 

glm(formula=y ~ UA, family="binomial") 

Deviance Residuals: 

1 2 3 4 5 

0.6342 -1.3812 -1.0846 0.7395 1.4257 

Coefficients: 

Estimate Std. Error z value Pr(>|z|) 

(Intercept) 10.4668 13.1665 0.795 0.427 

UA -0.3448 0.4472 -0.771 0.441 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 6.7301 on 4 degrees of freedom 

Residual deviance: 6.0658 on 3 degrees of freedom 

AIC: 10.066 

Number of Fisher Scoring iterations: 4 

Here the classification accuracy is about 79.5% 

2) Number of Assigned Cells in the First Iteration: 

Call: 

glm(formula=y ~ AC, family="binomial") 

Deviance Residuals: 

1 2 3 4 5 

0.6342 -1.3812 -1.0846 0.7395 1.4257 

Coefficients: 

Estimate Std. Error z value Pr(>|z|) 

(Intercept) -17.4626 23.1154 -0.755 0.450 

AC 0.3448 0.4472 0.771 0.441 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 6.7301 on 4 degrees of freedom 

Residual deviance: 6.0658 on 3 degrees of freedom 

AIC: 10.066 

Number of Fisher Scoring iterations: 4 

Here the classification accuracy is about 77.1% 
3) Unassigned Cells and No of cells with unique possibility 

at end of first iteration: 

Call: 

glm(formula=y ~ P1 + UA, family="binomial") 

Deviance Residuals: 

1 2 3 4 5 

0.1236 -1.5454 -0.3968 1.0508 0.9131 

Coefficients: 

Estimate Std. Error z value Pr(>|z|) 

(Intercept) 23.1191 28.3519 0.815 0.415 

P1 -1.9316 2.1979 -0.879 0.379 

UA -0.7019 0.8972 -0.782 0.434 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 6.7301 on 4 degrees of freedom 

Residual deviance: 4.4990 on 2 degrees of freedom 

AIC: 10.499 

Number of Fisher Scoring iterations: 6 

Here we get a 81.5% accuracy of classification 

4) Assigned cells and no of cells with unique assignment 

possibility at first iteration:  

Call: 

glm(formula=y ~ P1 + AC, family="binomial") 

Deviance Residuals: 

1 2 3 4 5 

0.1236 -1.5454 -0.3968 1.0508 0.9131 

Coefficients: 

Estimate Std. Error z value Pr(>|z|) 

(Intercept) -33.7324 44.4275 -0.759 0.448 

P1 -1.9316 2.1979 -0.879 0.379 

AC 0.7019 0.8972 0.782 0.434 

(Dispersion parameter for binomial family taken to be 1) 

Null deviance: 6.7301 on 4 degrees of freedom 

Residual deviance: 4.4990 on 2 degrees of freedom 

AIC: 10.499 

Number of Fisher Scoring iterations: 6 

We also run Chi-Square tests for getting models showing 
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highest 

True positive percentage: 

1) Unassigned cells at first iteration 

Chi-squared test for given probabilities 

data: UA 

X-squared=0.89655, df=4, p-value=0.9251 

2) Cells having unique possibility: 

Chi-squared test for given probabilities 

data: P1 

X-squared=4, df=4, p-value=0.406 

3) Assigned cells at first iteration 

Chi-squared test for given probabilities 

data: AC 

X-squared=0.5, df=4, p-value=0.9735 

Using randomly selected sample sudoku puzzles 
from various sources, we make sure that our classifier 
models are accurate and unbiased. 

4.2. Scatter Plot Showing Probability Distribution of the Penultimate Iteration 

 

Figure 11. Scatter plot showing assignment probability distribution at Penultimate iteration. 

4.3. Identifying a Multi Solution Puzzle 

We have included also an identifying logic that isolates 

multi-solution puzzles and flags it through the iterations as 

seen in the snippet below. 

Broadly three categories or cases can be charted out where 

grids can yield multiple solutions. 

Random Number Generator Cannot Fill Assign any Value 

Or Runs Out 

 

Figure 12. Locked conflicting iteration block. 
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4.3.1. Cell with Two Possible Assignment Values at the Penultimate Iteration 

 

Figure 13. Penultimate iteration with one locked cell and one with two assignment possibilities. 

4.3.2. All Unassigned Cells have Multiple Possibilities at Penultimate Iteration 

 

Figure 14. Penultimate iteration with no cell values with unique assignment possibility. 

These are explicitly called in the working code to flag such grids, this also highlights the potential of a puzzle generator. 

In order to get to logically define a puzzle generator we thus need to firstly revisit the algorithm, in terms of a flow chart. 
Algorithm flowchart: 
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Figure 15. Algorithm flow chart of the sudoku solver. 

4.4. Difficulty Rating of Sudoku Puzzles 

Based on the proposed and running it on various puzzles we come across what is a rounded normalized score. The 

hypothesis or premise of the difficulty rating is based on the probability of assignment to unassigned grids before puzzle is 

solved by the algorithm. 

 

Figure 16. Normalized Difficulty rating of sudoku puzzles based on the solver. 
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4.5. Applications of the Solver Algorithm 

Based on the study conducted and insights on the 

algorithm run, following possible applications could be 

explores: 

4.5.1. Cybersecurity Solutions 

A dynamically generated incomplete latin square or 

sudoku can serve as a strong authentication means for 

accessing extremely confidential information. Traditional 

username password-based authentication will have 

vulnerabilities that could be overcome by this means. 

4.5.2. Modelling Decision-making Problems 

Real-life decision-making scenarios especially in complex 

projects involve multiple factors, after exploring the 

algorithm from various perspectives, it is not far that we are 

able to create algorithms [3, 8], that are able to model 

decision making and factors governing it. 

 

4.5.3. Constraint Modelling for Complex Scenarios 

High backtracking or failure prone projects or issues, 

where constraints are also dynamic. We can use Latin squares 

or rectangles to model or approximate the constraints 

themselves [8, 7]. 

4.5.4. Cybersecurity 

Firewalls, antiviruses, token-based authentication 

mechanisms, make use of logic that could be manipulated 

and tampered. We thus need to integrate a mechanism that is 

feedback and input driven. The inputs to the mechanism 

being threat pattern or signature, this will also be used to feed 

a random number generator which feeds incomplete latin 

squares to our algorithm. A logic block that deliberately 

introduces a mismatch and fails an attempted authentication 

by the malicious software or virus program. The detailed 

logic for the system, needs to be developed in phases and 

calls for indigenously developing each of the logical blocks 

as shown below. 

Flowchart of the proposed cybersecurity solution: 

 

Figure 17. Cybersecurity solution design based on solver algorithm. 

4.5.5. Characterizing Material Properties 

The published article [9] talks about use of IFEA, 

characterizing methods based on conventional tests such as 

uniaxial tensile and compression tests. A closer thought to the 

process, we can see how the concept of an incomplete Latin 

square can find suitable use here. An incomplete Latin square 

can be shown analogous to an incompletely characterized 

material. Based on knowledge of permissible limits for 

properties such as uniaxial tensile strength, compression 

strength or shear strength we can model a random number 

generator, which can be run inside of the solver algorithm to 

completely decode the missing property values. 

4.5.6. Design of Experiments for Fractional Factorial 

Designs with Blocking Uses 

Latin squares for modelling scenarios when there are n 

distinct treatment types applied to n different subjects. Here 

balanced incomplete blocks [10] are used in situations where 

number of factors are less than number of treatment levels. 

Given that these form basis of designing incomplete blocks. 

Statistical model defining response variable yijk, seen as 
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an effect of other variables such as 	  (Overall average), Ri, 

column Cj, kth treatment Tk and error 
  ijk [10]. 

 

We are able to use the above model also to evaluate the 

incomplete blocks, in conjunction with the Latin square 

solver algorithm. This is applicable in situations where all 

treatments are distinct, number of subjects are definitely 

lower than treatments. 

Error modelling is cumbersome, but reduced factorials or 

blocking effects when known can be efficiently solved using 

our algorithm. 

Thus, we reach a point where the concept of purely 

deterministic or purely statistical approaches to model 

completely fail, calling in for new approaches to tackle 

challenges in all the mentioned problem areas. 

Reformulating (2), showing the error in predicting the 

outcome yijk 
  ijk � yijk �  µ �  Ri �  Cj �  Tk. 

Minimizing the above function given constraints, one of 

which is the Latin square that forms the design block. 

One of the real-life problems that is intriguing and similar 

in model to factorial design, being discussed here is that of 

identifying factors that negatively impact performance of an 

indigenously developed application with multiple features. 

Here we can liken application features to elements or 

attributes in a grid, treatments as the distinct combination of 

test scenario settings that application is being subjected to. 

For example, an application where multiple workflows are 

running concurrently, the number of factors causing variation 

are large, in most cases nested in structure too. Very often, 

the actual design block would often have missing elements, 

calling out more tests including these elements. In order to 

not run extra tests, and arrive at actual expected projection 

estimates, we need to use fractional factorials. 

Decision modelling using design spaces, can make use of 

the solver to fill up missing parts of the decision model or 

outcome. 

Even with use of non-parametric smoothing processes, for 

improving model accuracy, we need to make sure we reduce 

the space of unknowns, are left with most part of our 

experimental design known [10]. 

We can use the following excerpt showing a nested 

random number generator run to generate rows of varying 

sizes: 

5. Conclusions 

Applications of the generic Latin square or the solver 

algorithm could range from cybersecurity to frontiers in 

material science and material characterization. The 

possibilities are limitless, with the advent of modern AI/ML 

the algorithms can be further expanded and enriched to 

include multiple possibilities. 
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